HERSCOVICI's CONJECTURE ON PRODUCTS OF STARS, FAN GRAPHS

A. Lourdusamy,
Department of Mathematics, St.Xavier's college, Palayamkottai C.Muthulakshmi@sasikala,
Department of Mathematics,Sri Paramakalyani college, Alwarkurici.

Abstract

. Given a connected graph G,distribute k pebbles on its vertices in some configuration C.Specifically a configuration on a graph G is a function f from $\mathrm{V}(\mathrm{G})$ to $\mathrm{N} \bigcup\{0\}$ representing an assignment of pebbles on G . We call the total number of pebbles, k, the size of the configuration.A pebbling move is defined as the removal of two pebbles from a vertex and addition of one of those pebbles on an adjacent vertex. The pebbling number of a connected graph G is the smallest number $f(G)$ such that,however $f(G)$ pebbles are distributed on the vertices of G,we can move a pebble to any vertex by a sequence of pebbling moves.The t-pebbling number $\mathrm{f}_{\mathrm{t}}(\mathrm{G})$ of a simple connected graph G is the smallest positive integer such that for every distribution of $f_{t}(G)$ pebbles on the vertices of G,we can move t pebbles to any target vertex by a sequence of pebbling moves.Graham conjectured that For any connected graphs G and $H, f(G \times H) \leq f(G) f(H)$.Herscovici further conjectured that $\mathrm{f}_{\mathrm{st}}(\mathrm{G} \times \mathrm{H}) \leq \mathrm{f}_{\mathrm{s}}(\mathrm{G}) \mathrm{f}_{\mathrm{t}}(\mathrm{H})$ for any positive integers s and t.In this paper we show that Herscovici's conjecture is true when G is a star,fan graphs and H is a graph satisfying the 2 t - pebbling property.

Keywords. star,fan graphs graph,t-pebbling number,Herscovici's conjecture.

1.1. Introduction

The pebbling number is known for many simple graphs including paths, cycle and trees, but is unknown for most graphs and is hard
to compute for any given graph that does not fall into one of these classes. Therefore, it is an interesting question if there is an information we can gain about the pebbling number of more complex graphs from the knowledge of the pebbling number of some graphs for which we know. In the first paper on graph pebbling [1] Chung proposed the following conjecture. The conjecture is perhaps the most compelling open question in graph pebbling known as Grahams conjecture.
Conjecture1.1.1(Graham ([7]). For all graphs G_{1} and G_{2}, we have $f\left(G_{1} \times G_{2}\right) \leq$ $f\left(G_{1}\right) f\left(G_{2}\right)$. which is $f\left(Q_{d}\right)=2^{d}$. The hypercube is formed by a product of length two paths; $Q_{d}=Q_{d-1} \times P_{2}$. And we know that $2^{d}=f\left(Q_{d}\right)=f\left(Q_{d-1}\right) f\left(P_{2}\right)=2^{d-1} 2$. In addition to this the result has been shown to be true for the product of trees, the product of some specific cycles, and the product of a complete graph and any graph with the two pebbling property. In proving Graham's conjecture on graph pebbling two properties are used in the literature. They are the 2pebbling property[7] and the odd 2-pebbling property.There are a number of results that support Graham's conjecture, the first of pebbling property. In [3], Lourdusamy has defined the $2 t$-pebbling property of a graph.
Definition 1.1.2 ([3]). Given t-pebbling number of G, let p be the number of pebbles of G, let q be the number of vertices with at least one pebble. We say that G satisfies the $2 t$-pebbling property if it is possible to move $2 t$ pebbles to any specified target vertex of G starting from every configuration in which $p \geq 2 f_{t}(G)-q+1$ or equivalently $p+q>2 f_{t}(G)$ for all t.

The direct product of two graphs is defined as follows:
Definition 1.1.3 [2]. If $G=\left(\mathrm{V}_{\mathrm{G}}, \mathrm{E}_{\mathrm{G}}\right)$ and $\mathrm{H}=\left(\mathrm{V}_{\mathrm{H}}, \mathrm{E}_{\mathrm{H}}\right)$ be two graphs, the direct product of G and H is the graph $G \times H$ whose vertex set is the cartesian product $V_{G x H}=V_{G} \times V_{H}=\left\{(x, y) ; x \in V_{G}, y \in V_{H}\right)$ and whose edges are given by $E_{G x H}=\left\{(x, y),\left(x^{\prime}, y^{\prime}\right) ; x=x^{\prime}\right.$ and $\left(y, y^{\prime}\right) \in E_{H}$ or $\left(x, x^{\prime}\right) \in E_{G}$ and $\left.y=y^{\prime}\right\}$
We find the following theorems in [5] and [6]

Theorem 1.1.4 [5]. Let $K_{1, n}$ be on $n-s t a r$ where $n>1$. Then $f_{t}\left(K_{1}, n\right)=4 t+n 2$
Theorem 1.1.5 [6]. Let F_{n} be a fan graph on n vertices in order. For $n \geq 4$, $\mathrm{f}_{\mathrm{t}}\left(\mathrm{F}_{\mathrm{n}}\right)=4 \mathrm{t}+\mathrm{n}-4$.

With regard to the 2 t-pebbling property we find the following results in [3], [4],[5],[6] and [7].
Theorem 1.1.6 [7] All diameter two graphs satisfy the two pebbling property.
Theorem 1.1.7 [3] All paths satisfy the 2t-pebbling property for all t.
Theorem 1.1.8 [4] Let K_{n} be a complete graph on n vertices. Then K_{n} satisfies the $2 t$-pebbling property for all t.

Theorem 1.1.9 [5] The star graph $\mathrm{K}_{1, \mathrm{n}}$ where $\mathrm{n}>1$ satisfies the 2t-pebbling property.

Theorem 1.1.10 [6] Fan graphs satisfy the 2t-pebbling property.
With regard to the t-pebbling conjecture on products of graphs we find the following Theorems in [4], and [6].
Theorem 1.1.11 [4] Let $\left(K_{1, n}\right)(n>1)$ be a star. If G satisfies the $2 t$-pebbling property, then $f_{t}\left(K_{1, n} x G\right) \leq f\left(K_{1, n}\right) f_{t}(G)$ for all t.
Theorem 1.1.12 [6] Let F_{n} be a fan graph on n vertices $v_{o}, v_{1}, \ldots . v_{n-1}$ in order. If G satisfies the $2 t$-pebbling property, then $f_{t}\left(F_{n}, x G\right) \leq f\left(F_{n}\right) f_{t}(G)$ for all t.

Lourdusamy conjectured as
Conjecture 1.1.13 (Lourdusamy[3]). For any connected graphs G and H we have $f_{t}(G \times H) \leq f(G) f_{t}(H)$ for all t.

This conjecture is called the t-pebbling conjecture and Lourdusamy proved it when G is an even cycle and H satisfies a variation of the twopebbling property. Herscovici conjectured as
Conjecture1.1.14. For any connected graphs G and H, We have $f_{s t}(G \times H) \leq f_{s}(G) f_{t}(H)$ for all s,t.
In this paper, we prove that Herscovici's conjecture is true when G is a star,fan graphs and H is a graph having the $2 t$ pebbling property.

Theorem 1.1.15 [3]. The t-pebbling number of the path on n vertices is given by $\mathrm{f}_{\mathrm{t}}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{t} 2^{\mathrm{n}-1}$.
Theorem 1.1.16 [3]. Let $\mathrm{K}_{1, n}$ be on $\mathrm{n}-$ star where $\mathrm{n}>1$. Then $\mathrm{f}_{\mathrm{t}}\left(\mathrm{K}_{1, n} \mathrm{n}\right)=4 \mathrm{t}+\mathrm{n} 2$
Theorem 1.1.17 [6]. Let F_{n} be a fan graph on n vertices in order. For $\mathrm{n} \geq 4$, $\mathrm{f}_{\mathrm{t}}\left(\mathrm{F}_{\mathrm{n}}\right)=4 \mathrm{t}+\mathrm{n}-4$.

With regard to the 2 t -pebbling property we find the following results in [2] , [3], [4], [5]and [6].
Theorem 1.1.18 [5] All diameter two graphs satisfy the two pebbling property.
Theorem 1.1.19 [2] All paths satisfy the 2t-pebbling property for all t .
Theorem 1.1.20 [3] Let K_{n} be a complete graph on n vertices. Then K_{n} satisfies the 2 t -pebbling property for all t .
Theorem 1.1.21 [4] The star graph $K_{1, n}$ where $n>1$ satisfies the $2 t$-pebbling property.
Theorem 1.1.22 [6] Fan graphs satisfy the 2t-pebbling property.
With regard to the t-pebbling conjecture on products of graphs we find the following Theorems in [4].
Theorem 1.1.23 [4] Let $\left(K_{1, n}\right)(n>1)$ be a star. If G satisfies the $2 t$-pebbling property, then $f_{t}\left(K_{1, n} \times G\right) \leq f\left(K_{1, n}\right) f_{t}(G)$ for all t.
Theorem 1.1.24 [4] Let F_{n} be a fan graph on n vertices $\mathrm{v}_{\mathrm{o}}, \mathrm{v}_{1}, \ldots . \mathrm{v}_{\mathrm{n}-1}$ in order. If G satisfies the $2 t$-pebbling property, then $f_{t}\left(F_{n}, x G\right) \leq f\left(F_{n}\right) f_{t}(G)$ for all t.

1.2. Herscovici's conjecture on products of stars

Theorem 1.2.1 Let $K_{1, m}(m>1)$ be a star. If G satisfies the $2 t$-pebbling property. They $f_{s t}\left(K_{1, m} \times G\right) \leq f_{s}\left(K_{1, m}\right) f_{t}(G)$ for all s,t.
Proof : Let $V\left(K_{1, m}\right)=U \bigcup W$ where $U=\{u\}$ and $W=\left\{W_{1}, W_{2}, \ldots W_{m}\right\}$. We use induction on s to prove that $f_{s t}\left(K_{1, \mathrm{~m}} \times G\right) \leq f_{s}\left(K_{1, \mathrm{~m}}\right) f_{t}(G)$ for all s, t.
For $s=1$, theorem is true by Theorem 1.1.23.

We take $\mathrm{s}>1$. Then there are at least $(\mathrm{m}+6) \mathrm{f}_{\mathrm{t}}(\mathrm{G})$ pebbles on the graph. Let a be the number of pebbles on $\{u\} \times G$ and a_{i} be the number of pebbles on $\left\{w_{i}\right\} \times G$. Let $\mathrm{y} \in \mathrm{G}$.
Case 1. Suppose the target vertex is (u, y). By pigeonhole principle, $a_{i} \geq 2 f_{t}(G)$ for some $i=1,2, \ldots m$. Then from $\left\{w_{i}\right\} \times G, f_{t}(G)$ pebbles can be moved to $\{u\} \times G$ and hence t pebbles can be moved to (u, y). This leaves us with at least ($4 \mathrm{~s}+\mathrm{n}-$ 4) $f_{t}(G)$ pebbles. We can place (s-1) t additional pebbles on (u, y) by induction. Case 2. Suppose the target vertex is $\left(w_{i}, y\right)$ for some $i=1,2, \ldots \ldots$. . We claim that either $\{u\} \times G$ has at least $2 f_{t}(G)$ pebbles or there exists one copy in $\{W-$ $\left.w_{i}\right\} \times G$ with at least $4 f_{t}(G)$ pebbles or there are at least two copies in $\left\{W-w_{i}\right\} \times G$ with at least $2 \mathrm{f}_{\mathrm{t}}(\mathrm{G})$ pebbles each. Otherwise the total number of pebbles placed will be at most $(m+2) f_{t}(G)$.
Case 2.1: If $\{u\} \times G$ has at least $2 f_{t}(G)$ pebbles then we can put $f_{t}(G)$ pebbles on $\left\{w_{i}\right\} \times G$ for some i. Then t pebbles can be moved to $\left(w_{i}, y\right)$. With the remaining $(4(s-1)+m) f_{t}(G)$ pebbles we can move $(s-1) t$ additional pebbles on $\left(w_{i}, y\right)$.
Case 2.2 If there exists a copy in $\left(W-\left\{W_{i}\right\}\right) \times G$ with at least $4 f_{t}(G)$ or there are at least two copies in $\left(W-\left\{W_{i}\right\}\right) \times G$ with at least $2 f_{t}(G)$ pebbles then we can move $f_{t}(G)$ pebbles to $\{u\} x G$ using at most $4 f_{t}(G)$ pebbles. Hence t pebbles can be moved to (u, y). This leaves us with at least $(4(s-1)+(m-2)) f_{t}(G)$ pebbles which would suffice to put ($\mathrm{s}-1$) t additional pebbles on $\left(\mathrm{w}_{\mathrm{i}}, \mathrm{y}\right)$ by induction.
Corollary 1.2.2. Let $K_{1, m}(m>1)$ be a star and P_{n} be a path on n vertices. Then $\mathrm{f}_{\mathrm{st}}\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{P}_{\mathrm{n}}\right) \leq \mathrm{f}_{\mathrm{s}}\left(\mathrm{K}_{1, \mathrm{~m}}\right) \mathrm{f}_{\mathrm{t}}\left(\mathrm{P}_{\mathrm{n}}\right)$ for all s, t.
proof: The corollary follows from Theorem 1.2.1 and Theorem 1.1.19
Corollary 1.2.3. Let $K_{1, \mathrm{~m}}(\mathrm{~m}>1)$ be a star and F_{n} be a fan graph on n vertices.
Then $f_{s t}\left(K_{1, m} \times F_{n}\right)<f_{s}\left(K_{1, m}\right) f_{t}\left(F_{n}\right)$ for all s,t.
Proof: The corollary follows form Theorem 1.2.1 and Theorem 1.1.22
Corollary 1.2.4. Let $K_{1, \mathrm{~m}}(\mathrm{~m}>1)$ be a star and K_{n} be a complete graph. Then $\mathrm{f}_{\mathrm{st}}\left(\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{K}_{\mathrm{n}}\right) \leq \mathrm{f}_{\mathrm{s}}\left(\mathrm{K}_{1, \mathrm{~m}}\right) \mathrm{f}_{\mathrm{t}}\left(\mathrm{K}_{\mathrm{n}}\right)$ for all s, t.
Proof: The corollary follows from Theorem 1.2.1 and Theorem 1.1.20

Corollary 1.2.5. Let $K_{1, m}(m>1)$ be a star. Then $f_{s t}\left(K_{1, m} \times K_{1, n}\right) \leq f_{s}\left(K_{1, m}\right) f_{t}\left(K_{1, n}\right)$ for all s,t.
Proof: The corollary follows from Theorem 1.2.1 and Theorem 1.1.21
We have proved that conjecture 1.1.14 is true for all the products of a star by a (i) Path (ii) Fan (iii) Complete graph (iv) Star

1.3 Herscovici's conjecture on products of fan graphs

Theorem 1.3.1. Let F_{n} be a fan graph on n vertices $v_{o}, v_{1}, v_{2}, \ldots v_{n-1}$ in order. If G satisfies the $2 t$-pebbling property then $f_{s t}\left(F_{n} x G\right) \leq f_{s}\left(F_{n}\right) f_{t}(G)$ for all $s, t ., n \geq 3$.
Proof: We take the n copies of G i.e. $\left\{\mathrm{v}_{\mathrm{o}}\right\} \times \mathrm{xG},\left\{\mathrm{v}_{1}\right\} \times \mathrm{xG}, \ldots\left\{\mathrm{v}_{\mathrm{n}-1}\right\} \times \mathrm{xG}$ respectively as $G_{0}, G_{1}, \ldots, G_{n-1}$ and let a_{i} be the number of pebbles on G_{i} with p_{i} occupied vertices where $i=0,1,2, \ldots n-1$. Let $y \in G$.
Without loss of generality we assume that $\left(\mathrm{v}_{0}, \mathrm{y}\right)$ is the target vertex. $\left(\mathrm{v}_{0}, \mathrm{y}\right)$ is adjacent with each of $\left(v_{i}, y\right)$ and $\left(v_{i-1}, y\right)$ where $i=2,3, \ldots, n-1$. [If the target vertex is $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{y}\right)$, then it is adjacent with each of $\left(\mathrm{v}_{0}, \mathrm{y}\right)$ and $\left(\mathrm{v}_{\mathrm{i}-1}, \mathrm{y}\right)$]

We will prove the theorem by induction on s . The theorem is true by Theorem1.1.24, when $s=1$. Assume $s>1$. If $a_{0}>f_{t}(G)$, then we put t pebbles on $\left(\mathrm{v}_{\mathrm{o}}, \mathrm{y}\right)$. This leaves us with at least $(4 \mathrm{~s}+\mathrm{n}-5) \mathrm{f}_{\mathrm{t}}(\mathrm{G})$ pebbles which would suffice to put $(s-1) t$ additional pebbles on $\left(v_{0}, y\right)$. Hence assume $a_{0} \leq f_{t}(G)-1$.

If $a_{i-1}+a_{0}+a_{i} \geq 3 f_{t}(G)$ pebbles, then $f_{t}(G)$ pebbles can be moved to G_{0} and hence t pebbles can be moved to $\left(\mathrm{v}_{0}, \mathrm{y}\right)$, then we are done. With the remaining $(4 s+n-7) f_{t}(G)$ pebbles, we can put $(s-1) t$ additional pebbles on $\left(\mathrm{v}_{\mathrm{o}}, \mathrm{y}\right)$ by induction. Assume $\mathrm{a}_{\mathrm{i}-1}+\mathrm{a}_{\mathrm{o}}+\mathrm{a}_{\mathrm{i}} \leq 3 \mathrm{f}_{\mathrm{t}}(\mathrm{G})-1$. Then the number of pebbles on the sub graph $\quad\left(\mathrm{F}_{\mathrm{n}}-\left\{\mathrm{v}_{0}, \mathrm{~V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}-1}\right\}\right) x G$ will be at least $(4 \mathrm{~s}+\mathrm{n}-7) \mathrm{f}_{\mathrm{t}}(\mathrm{G})+1$ pebbles.

Hence $\left(\mathrm{F}_{\mathrm{n}}-\left\{\mathrm{v}_{0}, \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}-1}\right\}\right) x G$ contains at least $(\mathrm{n}+1) \mathrm{f}_{\mathrm{t}}(\mathrm{G})+1$ pebbles as $\mathrm{s}>1$. By pigeonhole principle at least one of $G_{j}(j=1,2, \ldots n-1$ where $j \neq i$, $i-1$) receives at least $2 f_{t}(G)$ pebbles hence $f_{t}(G)$ pebbles can be moved to G_{0}. Hence t pebbles can be moved to $\left(v_{0}, y\right)$. This leaves us with at least $(4 s+n-6) f_{t}(G)$ pebbles which would suffice to put(s-1) t addional pebbles on $\left(v_{0}, y\right)$ by induction.

Corollary 1.3.2 Let F_{n} be a fan graph on n vertices and P_{m} be a path on m vertices. Then $f_{s t}\left(F_{n} x P_{m}\right) \leq f_{s}\left(F_{n}\right) f_{t}\left(P_{m}\right)$ for all s, t.

Proof: The corollary follows from Theorem 1.3.1 and Theorem 1.1.19
Corollary 1.3.3. Let F_{n} be a fan graph on n vertices and K_{m} be a complete graph on m vertices. Then $f_{s t}\left(F_{n} \times K_{m}\right) \leq f_{s}\left(F_{n}\right) f_{t}\left(K_{m}\right)$ for all s,t.
Proof : The corollary follows from Theorem 1.3.1 and Theorem 1.1.20
Corollary 1.3.4. Let F_{n} be a fan graph on n vertices and $K_{1, m}$ be an m-star $(m>1)$. Then $f_{s t}\left(F_{n} x K_{1, m}\right) \leq f_{s}\left(F_{n}\right) f_{t}\left(K_{1, m}\right)$ for all s,t.
Proof: The corollary follows from theorem 1.3.1 and Theorem 1.1.21.
Corollary1.3.5. Let F_{n} be a fan graph on n vertices Then $\mathrm{f}_{\mathrm{st}}\left(\mathrm{F}_{\mathrm{m}} \times \mathrm{F}_{\mathrm{n}}\right) \leq \mathrm{f}_{\mathrm{s}}\left(\mathrm{F}_{\mathrm{m}}\right) \mathrm{f}_{\mathrm{t}}\left(\mathrm{F}_{\mathrm{n}}\right)$ for all s, t.

Proof: The corollary follows from Theorem 1.3.1 and Theorem 1.1.22.
Thus we have proved that conjecture 1.1.14 is true for all the products of a complete graph by a (i)Path (ii) Fan (iii) Complete graph (iv) Star.

Is Herscovici's conjecture is true when G is a complete bipartite graph?

References.

[1].F.R.K.Chung,Pebblinginhypercubes,SIAMJ. Discrete Math., 2(4), (1989), 467-472.
[2].D.S.Herscovici and A.W.Higgins, The pebbling number of $\mathrm{C}_{5} \times \mathrm{C}_{5}$,
Disc.Math., 187(1-3), (1998), 123-135.
[3].A.Lourdusamy,t-pebbling the product of graphs,Acta ciencia Indica, XXXII(M.No.1), 2006, 171-176.
[4].A.Lourdusamy and A.Punitha tharani,On t-pebbling graphs,Utilitas Mathematica, 871(2012), 331-342.
[5].A.Lourdusamy and A.Punithatharani,The t-pebbling conjecture on the products of complete r-partite graphs,ARS Combinatoria,102(2011),201-212. [6].A.Lourdusamy,S.Samuel Jeyaseelan,A.Punitha tharani,t-pebbling produt of fan graphs and the product of wheel graphs,International Mathematical Forum,4(32),(2009),1573-1585.
[7].L.Patcher,H.S.Snevily and B.Voxman,On pebbling graphs,Congressus Numerantium,107(1995),65-80.

